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SYMBOLS 

Initial  jet  radius  or  half-height 

Widths of the  mixing  regions 

Drag  coefficient 

Diameter 

Total  pressure;  g = g/g  (nondimensional) 

Constants 

Characteristic  length 

Pressure 

Transformed  axial  coordinate; 3 = S/$" (nondimensional) 

Temperature 

Axial  velocity;  u = u/u  (nondimensional) 

Normal  velocity 

Axial  and  normal  coordinates 

Mass  fraction  of  species "i" 

Eddy  viscosity,  defined  by  Equ. (1) 

Displacement  thicknesses 

Turbulent  viscosity 

Dens i ty 

Shear 

Stream  function; $ = $/$a (nondimensional) 
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Conditions at y = a, x = 0 

Conditions  along  jet  centerline 

Free  stream  conditions 

Initial  jet  conditions 
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INTRODUCTION 

The  general  flow  field  of  interest  is  simply  an  inner  stream 
of  fluid  injected  parallel  to a moving  outer  stream,  and  turbulent  mixing 
between  these  streams is the  subject  of  the  present  investigation.  This 
is, of  course,  one  of  the  oldest  viscous  flow  problems  that  remains 
essentially  unsolved,  and  the  continuing  interest  in  this  general  problem 
stems  from  the wide variety of practical  devices  whose  intelligent  design 
depends  upon  an  understanding  of  such  processes.  Jet  ejectors  and  combus- 
tion  chambers  are,  perhaps,  two  of  the  most  common  examples. 

In an  area  where so much  work  has  been  reported,  it  is  fortunate, 
indeed,  that  several  authors  have  endeavored  to  review  previous  studies. 
References (1) through (7 )  are  the  most  useful of these  as  background 
information  for  what  follows.  Other  work  that  has  appeared  more  recently 
or  that  which  is  of  particular  interest  here  is  also  listed  in  the  Refer- 
ences. In Table I, the  principal  experimental  studies  are  cited  along 
with  a very  cryptic  description  of  their  main  characteristics.  Wake ex- 
periments  also  bear  upon  the  present  problem  in a general way, but, as we 
shall  see  later,  a  direct  quantitative  application of such  results  must 
await  further  developments  in  our  basic  understanding  of  turbulent  shear 
flows. 

The  history  of  the  analytical  treatments  of  this  problem  is 
also  very  lengthy; here,  however, it  is  instructive  to  consider  wake 
problems  concurrently.  The  classical  treatment  (Refs. 2-6) of  free  mixing 
problems  is  based  on a view of the  flow  field  where  there  are  two  main 
regions of  the  flow: 1) the  transitional  or  developing  region  and 2) the 
similarity  regions,  where  suitably  scaled  profiles  are  self-preserving 
with  axial  distance. In the  jet case, an  initial  region  containing  the 
potential  core  precedes  the  transitional  region.  Mixing  in  this  initial 
region  is  normally  taken  as  that  for  the  well  known  half-jet  problem 
(two  unbounded  parallel  streams  of  different  velocity  initially  separated 
by  an  infinitesimally  thin  plate).  When  the  inner  boundary  of  this 
mixing  region  intersects  the  axis  of  the jet, the  initial  region  is  deemed 
ended, and  the  next  stage  in  the  calculation  must  begin. At this  point, 
however,  a  very  crude  assumption  was  commonly  made:  the  transitional 
region  was  neglected  and  the  similarity  region  was  'assumed  to  begin  im- 
mediately.  For wake  problems,  of  course,  one  does  not  normally  treat  an 
initial  region  (the  near  wake)  directly  but  the  same  assumption  of 
neglecting  the  transitional  region  and  taking  similar  profiles  immediately, 
now  at  the  "initial"  station,  has  been  commonly  made. 

This  general  procedure  is  open  to  criticism  on  two  counts. First, 
the  flow  in  the  initial  region is not  well  represented by  the  idealized 
half-jet  problem  since  real  initial  profiles  are  far  from  ideal.  The 
boundary  layers  on  the  inside  and  outside  of  the  splitter  plate  and  the 
thickness  of  the  splitter  plate  itself  serve  to  produce  large  distortions 
of  the  initial  profiles  which  are  known  to  produce  large  effects  on  the 
development of the  near  field.  This  manifests  itself  in  the  generally 
poor  prediction  of  the  length  of  the  initial  region  by  the  classical 
theories  (Ref. 4 ) .  Second,  it  is  well  known  that  the  similarity  region 
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does  not  begin  near  the  end  of  the  initial  region.  Townsend  (Ref. 3) 
indicates,  for  example,  that  the  wake  behind  a  circular  cylinder  does 
not  become  "similar"  until an axial  distance  greater  than  about 100 
diameters.  These  two  criticisms  are  not  merely  academic;  taken  together 
they  result  in  rather  poor  agreement  between  the  classical  theory  and 
experiment.  On the.basis of  these  observations,  it  seems  clear  that  the 
transitional  or  non-similar  region  of  the  flow  field  must  be  treated 
directly.  Thus, we can  consider  either  analytic  approximations  that do 
not  employ a similarity  assumption  (Refs. 28, 29) or  strictly  numerical 
procedures  (Ref. 30). Both  of  these  choices  will  be  discussed  in  detail 
in the  present  report. 

To this  point,  our  considerations  of  the  analytical  treatment 
of  turbulent  free  mixing  problems  has  dealt  primarily  with  the  question 
of  solving  the  equations  of  motion.  While  being  important,  this  is  not 
the  area  of  greatest  concern.  The  major  difficulty  associated  with  these 
problems  is  the  specification  of  some  representation  of  turbulent  trans- 
port  processes.  Our  understanding  of  turbulence  at  this  time  is  not  such 
that  one  can  treat  the  "turbulent"  processes  within a shear  flow  directly. 
Rather, the  most  that  can  be  expected  is  some  prediction  of  the  "mean"  flow 
properties.  To  this  end, we relate  the  shear  to  the  mean  flow  variables 
as  following  Boussinesq 

7 = (pe)u 
Y 

where c is an "eddy  viscosity".  This  is  certainly a gross  simplification 
of  turbulence  and can  be  attacked  on  physical  grounds  (Ref. 3), however, 
at  the  present  time,  it  represents  the  only  fruitful  avenue  of  approach 
to turbulent  shear  flows.  The  eddy  viscosity  models  that  have  been  pro- 
posed  for  the  main  mixing  region  of  free  mixing  flows  are  summarized  in 
Table 11. The  initial  region  in  the  jet  problem  requires  special con- 
sideration, and we  shall  discuss  this  point  shortly.  The  earlier  "mixing 
length"  theories  given  as  the  first  four  cases  in  the  table  have  been 
generally  discredited  (Ref. 3 4 ) ,  and  most  workers  in  the  field  now  favor 
some  application  of  the  concept  of  Prandtl's  third  model  given  as  the 
fifth  item  in  Table 11. 

We  digress  here to  discuss  the  flow  in  the  initial  region. A gen- 
eral  treatment  of  this  part  of  the  flow  must  be  able  to  handle  arbitrary 
boundary  layers  on  the  inside  and  the  outside  of  the  splitter  plate  where 
either  or  both  may  be  laminar  or  turbulent.  Further,  the  wake  trailing 
from  the  finite  thickness  splitter  plate  and  its  interaction  with  both 
splitter  plate  boundary  layers  must  be  treated.  This  is a formidable 
fluid  flow  problem  in  itself  and  will  require  further  extensive  study 
before  its  solution can be  confidently  incorporated  into  a  treatment  of 
the  transitional  and  far  flow  fields.  There are,  however,  many  technolog- 
ical  applications  of  jet  mixing  (e.g.  fuel  injection)  primarily  concerned 
with  the  development  of  the  flow  field  over  distances  that  are  long 
(x - 102a)  compared  to  the  initial  region (x - loa). Under  these cir- 
cumstances  it  is  to  be  expected  that  the  details  of  the  initial  region 
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will have  a  small  effect on the  region  of  interest,  and  some  approximation 
there can be tolerated. If an approximation is to be made, a  convenient 
one  might  as  well  be  selected. In the  greatest  part  of  what  follows, 
therefore,  the  eddy  viscosity in the  initial  region  has  been  based  on 
the  gross  profile in the  same  manner  as  for  the  main  region  of  the  flow. 
This  model is certainly  not  physically  correct,  but  it  will  be  shown  later 
that it does, in fact,  produce  predictions  at  least  as  accurate as the 
classical  half-jet  treatment. In a  few  cases,  the  experimental  data  to 
be compared  with  theory do not extend  far  enough  downstream  of  the  initial 
region  to  make  this  approximation  adequate. In those  cases, it is  necessary 
to  start  the  analysis  with an experimental  "initial"  profile  just  downstream 
of  the  initial  region.  This  is  exactly  the  course  of  action  followed in the 
wake case  where  it  is  necessary to  start  with  a  profile  at  the  end of the 
"near  wake". The  agreement  between  experiment  and  theoretical  prediction 
in the  main  region  of  the  jet  is  always  improved  by  starting  the  calculation 
with an experimental  "initial"  profile  at  the  end  of  the  potential core 
region.  This  procedure  has not  been  employed  in  general  here  as  it  is 
felt  to be artificial. A useful  theory  must be  able  to  provide  reasonable 
predictions in the  region of interest  starting  with  the  true  initial  con- 
ditions  or  some  simplification  thereof. 

Returning  now  to  Table 11, it  is  important  to  note  that  the  three 
entries  following  Prandtl's  third  model can  be  shown to  be  equivalent  to 
it  and  each  other.  Consider  first  the  Clauser  model+ 

E = k, u 6'' e ( 2 )  

where k l  .018  and  the  Prandtl  model  using b,(x) - as  the  width, b5, 
2 

c = .037 b,(x) Iumax - u  I 
2 min 

For  simple  profile  shapes  such  as  a  rectangular  or  triangular  defect  or 
excess,  one  finds  that  the  two  expressions  agree  exactly  in  form  and  to 
the  extent  of .036 versus .037 as  the  proportionality  constant. Later, 
specific  numerical  results  will  be  presented  for  jet  solutions  with  both 
models  and  comparison  with  experiment  made.  This  will  only  strengthen 
the  assertion  made  here  that Equ. (2) and ( 3 )  are  equivalent.  The  "wake" 
models  of  Schlicting  and  Hinze can be  reduced  to th'e same  form  as  the 
Clauser  model.  Nothing  that 

C d = 2 0  
D ( 4 )  

and  taking  a  representative  value  of  C = 1.20 for  a  circular  cylinder 
in high  Reynold's  number  flow,  these  expressions  become  respectively D 

E = .044 ue 0 (5) 

and 

+ Here 6* must  be  interpreted  to  be  based  on  the  absolute  value  of 
(1 - 
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I n  the   t rea tment  of wake problems, i t  i s  common t o   n e g l e c t   t h e   f a c t o r  
(u/u ) i n   t h e   d e f i n i t i o n  of 8 s ince   (u /ue)  2 1. This  does,  however, e 

m 

render  8 = A* (A7k = 
r-- U 

11" I dy) SO t h a t ,   t h e s e   f o r m u l a s   c a n  as 
J -03 ue 

w e l l  b e   w r i t t e n  

E = .044 ue A* 

Q = .027 ue A* 

The Clauser  model w r i t t e n  i n  t h e s e  terms i s  

E = .018 ue A* 

where we have   taken   the   d i sp lacement   th ickness   appropr ia te   to  a "two-sided", 
planar   f ree   mixing  problem  rather   than  the  "one-sided"  boundary  layer   case 
considered by Clauser .  A s  s ta ted   above ,  i t  w i l l  be shown t h a t  Equ. (2a) 
provides   p red ic t ions  i n  good agreement wiAh j e t  experiments.  The q u e s t i o n  
a r i s e s  as t o  why the   cons t an t   fo r   wakes   (u  < 1) i s  so much l a rge r   t han  
t h a t   f o r   j e t s   ( u j   1 ) .  Abramovich  (Ref. 4 ,  pp.  211) n o t e s   t h i s   e f f e c t  
and a t t r i b u t e s  i t  to   i nc reased   t u rbu lence   caused  by the   separa ted   base  
flow i n   t h e  wake caseA The w r i t e r  i s  not  aware of   any  constant   densi ty  
j e t  expe r imen t s   w i th   u j  < 1 t h a t   m i g h t   h e l p   t o   c l a r i f y   t h e   m a t t e r .   F o r  
our  purposes  here,   however,   the  important  result  i s  t h a t   t h e s e   f r e e  mix- 
ing  eddy  viscosi ty   models   are  a l l  equ iva len t   i n   func t iona l   fo rm.  

j 

The s i x  models l i s t e d   i n   T a b l e  I1 fo l lowing   the  wake  models are 
a t t empt s   t o   ex t end   t he   bas i c   P rand t l  model t o  problems  involv ing   s ign i f -  
i c a n t   d e n s i t y   v a r i a t i o n s .  The Ting-Libby Model r e su l t s  from  an  attempt 
to   apply   t ransformat ion   theory   to   tu rbulen t   f ree   mix ing;  i t  has  been shown 
t o   b e   u n r e l i a b l e   ( R e f .   1 8 ) .   F e r r i l s   s u g g e s t i o n   o f   u t i l i z i n g  a mass flow 
d i f f e r e n c e   t o   r e p l a c e   t h e   v e l o c i t y   d i f f e r e n c e   i n   t h e   P r a n d t l  model has 
provided  predict ions  of   unrel iable   accuracy  for   the  axi-symmetr ic   case 
(Refs. 2 2 ,  23).  However, when the mass  f low  difference was a p p l i e d   t o  
the   p l ana r   ca se ,  a good predic t ion   (Ref .  29) was achieved   for   the  one 
e x p e r i m e n t   t h a t   e x i s t s   i n   t h e   l i t e r a t u r e   ( R e f .  2 1 ) .  The A l p i n i e r i  model 
i s  c o n t r a r y   i n  form t o  any  other  model  and m u s t  be  viewed as e s s e n t i a l l y  
e m p i r i c a l ,   q u a l i t a t i v e l y   a s  w e l l  a s   q u a n t i t a t i v e l y .  The simple Zakkay 
axi-symmetric model g iven   i n   Tab le  I1 i s  based on the  presumption  that  
t h e   a s y m p t o t i c   d e c a y   o f   t h e   c e n t e r l i n e   v e l o c i t y   a n d   j e t   f l u i d   c o n c e n t r a -  
t ion   behave   as   the   inverse  of the  square  of   the   s t reamwise  dis tance,  
i .e .   x-n  where n = 2 ,  in   the   ax i -symmetr ic   case .  It  i s  t r u e   t h a t   t h e s e  
q u a n t i t i e s  do  behave  as "x" t o  some negat ive  exponent ,   n ,   but   the   value 
of I 1  I t  n i s  a t   l e a s t  a f u n c t i o n   o f   t h e   j e t   . t o   f r e e  stream mass f l u x   r a t i o ,  
pjuj/peue as can   be   seen   in   F ig .  No. 1. Zakkay a s s e r t s   t h a t   a n   e x t e n d e d  
form  of h i s  model can  be  used  for   cases   with n # 2.0. Examination  of  Ref. 23 ,  
however ,   reveals   that  i t  i s  necessa ry   t o  know the  decay  exponent  for  both  the 
c e n t e r l i n e   c o n c e n t r a t i o n  and t h e   v e l o c i t y  a p r io r i   be fo re   t he   ex tended  model 
can b e   s p e c i f i e d .  This , in   essence ,   requi res   knowledge  of the   behavior  of t he  



solution  before  the  solution  can  be  obtained.  Thus,  there  is no unified 
picture  of  the  treatment  of  flows  with  significant  density  variations  on 
the  basis  of  existing  eddy  viscosity  models,  particularly  for  the  axi- 
symmetric  configuration. 

Since  it was possible  to  demonstrate  some  unity  of  the  models  for 
planar,  constant  density  cases,  it  is  instructive  to  examine  new  means  for 
extending  these  models  to  the  compressible  case. A s  these  models  are  all 
equivalent, we may  start  with  any  one.  Rather  than  the  usual  procedure  of 
starting  with  the  Prandtl  model,  start  here  with  the  Clauser  model. It is 
simple,  at  least  formally,  to  extend  this  to  varying  density,  i.e. 

co 

G = .018  ueA* = ,018  ue dY 

and  to  show  that  for  simple  profiles,  such  as a triangular  velocity  defect, 
that  this  expression  is  equivalent  to  the  planar  mass  flow  difference  model 
given  in  Table 11. Recalling  that  this  model  produced  predictions  in  good 
agreement  with  experiment,  it  may  be  stated  that  the  Clauser  model  can  be 
viewed  as  an  adequate  representation  of  planar,  free  mixing  flows  with  or 
without  strong  density  variations.  With  the  results  of  Ref. 36 the  state- 
ment can be  broadened  to  include  the  effects  of  strong streamise pressure 
gradients. 

In view  of  all this, one  may  ask  what  the  difficulty  is  with 
the  axi-symmetric  case. It is  the  purpose  of  this  paper  to  propose  an 
answer  to  that question.  First,  some  new  results for  the  planar  case  will 
be  presented  to  substantiate  some  of  the  assertions  made  above.  Then,  the 
axi-symmetric  case  will  be  treated  in  detail.  All  of  the  work  is  limited 
to  two-dimensional  (either  planar  or  axi-symmetric),  steady,  fully  turbulent 
flows  without  chemical  reaction.  Pressure  gradient  and  three-dimensional 
effects  are  left  to a later  report. 

ANALY s IS 

The  turbulent  laws  are  taken  here  to  be  identical  to  the  correspond- 
ing  laminar  laws when expressed  in  terms  of  mean  fLow  quantities  and  tur- 
bulent  transport  coefficients.  Further,  the  boundary  layer  form  of  the 
conservation  laws  is  assumed  to  apply. 

Planar  Flows. In this  section,  some  new  results  for  planar  flows 
will be  developed  and  discussed.  The  primary  aim  of  this work  is to  substan- 
tiate  some  of  the  assertions  made  in  the  Introduction;  for  this  purpose con- 
stant  pressure  cases  only  will  be  considered. 

It has  been  stated  that  it  is  necessary  to  treat  the  non-similar 
development of the  flow  field  in  the  transitional  region.  The  choice  of a 
method  for  solving  the  flow  equations  thus  reduces  to  either a strictly 
numerical  procedure  or an analytic  approximation. Here,  an analytic  approx- 
imation  of  the  linearized  type  (Ref. 37) will  be  employed.  This  type  of 
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approach  has  been  shown  to  provide  very  good  approximations  for  free 
mixing  problems  (Ref. 38). Specifically,  the  physical  normal  coordinate, 
y, is  replaced  by a  stream  function, S(x,y), 

Sy = U(X,Y) ; -$x = V(X,Y) (8) 

and  the  total  pressure, g(x,$) E P(x) + pu2(x,$)/2, is  introduced  as  the 
dependent  variable.  With  this,  the  Mass  Continuity  and  Momentum  Equ's.  be- 
come 

gx = su(xy$)gglli 

gx = y(x)g 

This  is  approximated  as 

$$ 
where uc(x)  is  the  velocity  along  the  centerline  of  the  jet. 
a new  streanwise  coordinate 

rx 
S s(x')uC(x')dx' 

J O  

and  using  the  boundary  conditions 

g(0,llr) = g j  = P + pu?/2 ; O < JI < $a J 

- - 
'e = P + p u z / 2  ; $ > $a 

lim$ "t 03 g(S,JI) = g e  

the  solution  becomes 

(10) 

Introducing 

where g = g/ge, 3 = S I $ : ,  $ = $/$,. The  solution  for u(S,JI) can be  found 
by  simple  algebraic  manipulation. It remains  then  to  invert  the S(x) and 
$(y,x) transformations  to  obtain  the  solution  in  the  physical  plane. 

N 

It is  at  this  point,  inverting  the S(x) transformation,  that  a 
model  for  the  eddy  viscosity  must  be  specified. It has  been  asserted  that 
the  Clauser  model  represents a unified  and  adequate  statement; it was  used 
here.  Some  results  of  the  analysis  are  compared  with  the  experimental  data 
presented  in  Ref. (14) in  Fig. No. 2 on  the  basis  of  the  centerline  velocity 
decay  for  u./ue = 2.0. Also  shown  is  the  Classical  Theory  (Ref. 4 )  predic- 
tion  for  each  case.  The  first  point  of  importance  to  note  is  the  poor  pre- 
diction  of  the  initial  region  length  by  the  Classical  Theory  even  though 
some  attempt  at  including  the  effects  of  initial  non-uniformity was  made  in 

J 
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this  case. It is  true  that  the  description  of  this  region  by  the  heuristic 
approximation  on  the  eddy  viscosity  proposed  herein  is  not  truly  adequate 
either,  but  it  is  certainly  at  least  as  accurate  as  that  of  Classical  Theory. 
Secondly,  the  present  theory  does  seem  to  predict  the  behavior  of  the  flow 
in  the  non-similar  transitional  region  more  accurately.  That  is,  the  slope 
of  the  velocity  decay in the  region 25 5 x/a 5 75 is  more  accurately  pre- 
dicted  by  the  present  solution.  Lastly,  the  present  and  the  Classical 
results  become  the  same  far  downstream  in  the  similarity  region. 

This  has  been  accomplished  using  the  generalized  Clauser  model  for 
the  eddy  viscosity. To the  author's  knowledge  this  is  the  first  time  that 
this  model  has  ever  been  applied  to  anything  but  a  boundary  layer  flow. It 
has  been  previously  asserted  here  that  this  model is equivalent to.the  Prandtl 
model  commonly  employed  for  free  mixing  problems,  and  it  is  proposed  now 
to  justify  this  assertion.  This can be  expeditiously  accomplished  by 
taking  the  solution  developed  here  and  calculating  the  eddy  viscosity 
based  on  the  Prandtl  model  from  these  profiles.  The  results  of  such a  cal- 
culation  are  given  in  Fig. No. 3 .  Certainly,  the  two  models  are  in  very 
close  quantitative  and  qualitative  agreement.  Also  shown in the  figure  is 
the  eddy  viscosity  in  the  initial  region  as  predicted  by  the  half-jet  or 
free  jet  boundary.  Taking  this  in  conjunction  with  Fig. No. 2 one  can con- 
clude  that  the  true  eddy  viscosity  in  the  initial  region  lies  somewhere 
between  this  prediction  and  the  results  of  the  heuristicapproximation  for 
this region  employed  here. 

Axi-Symmetric  Flows.  Starting  with  the  now  substantiated  conclusion 
that  the  Prandtl  model,  the  Clauser  model  and  the  wake  models  are  all  equiv- 
alent  in  the  planar case, one  may  choose  to  seek a corresponding  axi-symmetric 
model  using  any  of  these  three  as  the  starting  point.  Schlicting  (Ref. 5) 
simply  used  the  planar  form  of  the  Prandtl  model in the  constant  density 
case  and  Ferri  (Ref. 18) then  employed  his  mass  flow  difference  concept  to 
this. It will  be  shown  here  that  neither  step  is  adequate.  Rather,  an 
axi-symmetric  equivalent  of  the  planar  models  will be sought  starting  with 
the  generalized  form  of  Clauser's  planar model. Rewrite  this  as 

where pT(x) is  the  turbulent  viscosity.  This  can  be  read  to say, 
"The  turbulent  viscosity  is  proportional to the  mass  flow  defect  (or 
excess)  per  unit width  in  the  mixing  region".  One  can  carry  this  state- 
ment  over  into  axi-symmetric  flow  by  defining a new  displacement  thick- 
ness, &+cy,  as 

This  gives 
pT(x) = k2 ( p  u rrS:+)/L e e  r 

The  proportionality  constant, k2, will  have  to  be  determined  by a 
comparison  between  theory  and  experiment  for  one  case  as  is  done  with 
all  eddy  viscosity  models. It will of  course  be  a  function  of  the 
choice  of  the  characteristic  length, L; here we take L = a, the  initial 
jet  radius.  With  this,  the  model  becomes 
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The  question  of  solving  the  equations  of  motion  remains.  The 
writer  was  fortunate to  be  able  to  apply  some work of a previous 
colleague, S. L. Zeiberg, in this  regard.  The  finite-difference  pro- 
gram  for  treating  hypersonic  wake  problems  developed  at  the  General 
Applied  Science  Laboratories  (Ref. 30) was  used  directly,  only  minor 
alterations were  made to  include  the  new  eddy  viscosity  model.  The 
cooperation  of  the  Special  Projects  Office  of  the U. S. Navy  in  agree- 
ing  to  make  the  program  available  is  gratefully  acknowledgea. 

In order  to  make  the  one-.time  determination  of  the  constant 
in  Equ.(l7)  and  to begin  the  comparison  of  theory  and  experiment,  the 
constant  density  experiments  of  Forstall  and  Shapiro  (Ref. 1) were 
employed.  The  particular  case  chosen  was  for  u./u = 2.0  and  the  results 
are  shown  in  Fig.  No. 4 .  The  value  of b n  determined  is  0.018.  One can 
observe  that  the  unified  model  gives  excellent  qualitative  as  well  as 
quantitative  agreement  with  the  data;  the  asymptotic  decay  predicted  by 
the  Prandtl  model  is at variance  with  the  data.  Note  that  again,  the 
Classical  theory  provides a poor  prediction.  Returning  to  the  question 
of  the  asymptotic  decay rate, it  is  interesting  to  put  the  data  and  the 
numerical  results  for  the  two  eddy  viscosity  models  on  log  paper  since 
the  asymptotic  behavior  should  be a straight  line  (i.e.  x-n).  This  has 
been  done  in  Fig.  No. 5 where  it can be  clearly seen.that the  unified 
model  predicts a decay  rate  in  much  better  agreement  with  experiment 
than  the  Prandtl  Model.  The  axial  variation  of  the  eddy  viscosity  as 
predicted  by  the  two  models  is  given in  Fig.  No. 6. 

J e  

At  this  point,  comparisons  between  theory  and  experiment can be 
extended  to  cover a  wider  range  of  parameters.  The  effects  of  density 
variations  are  now  included,  limited,  for  the  moment, to those  due  to 
temperature  variations.  Ferri's  extension  of  Prandtl's  model  is  em- 
ployed  along with the  unified model, and  the  experimental  data  of  Landis 
and  Shapiro  (Ref.  12)  is  used  as  the  standard  against  which  the  adequacy 
of  the  theories  are  measured. A  constant  Prandtl  number  of 0.75 in 
accordance  with  previous  (Refs. 1, 12) suggestions  is  used  throughout. 
Results  for  heated  jets  (T./T = 1.19) with  u./ue = 2.0 are  given  in 
Fig.  No. 7 and  those  for  (T./T = 1.31) with u./u = 4.0 are  given  in 
Figs.  No. 8 and 9. In these  cases also, the  solution  including  the 
temperature  field  based  on  the  unified  model  is  generally  in  better 
agreement  with  the  data  than  that  based  on  Prandtl's  model  or  Ferri's 
extension  thereof.  This  conclusion  is  reached  on  the  basis  of  the 
slope  of  the  centerline  velocity  and  temperature  decays.  The  limited 
downstream  extent  of  the  data  does  allow  some  variety  of  opinion  on 
this  point  especially  for  the  case  in  Fig. No. 9. 

J e  J 
J e   J e  
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The  last  variable  that  must  be  considered  in  the  general 
treatment  of  this  flow  problem  is  jet  and  free  stream  composition. 
Many  of  the  practical  app1ications.involve  the  injection  of  one  fluid 
into  a  moving  stream  of  another,  and  a  useful  eddy  viscosity  model 
must  be  able  to  handle  such  cases.  The  case  of a  jet of  hydrogen 
injected  into  an  air  stream  provides a  stringent  test  of  the  theory 
since  there  is a  very  large  density  gradient  across  the  mixing  zone. 
This  also  represents  a  situation  of  current  technological  interest. 
Some  tests  of  Alpinieri  (Ref. 22) and  Zakkay  and  Krause  (Ref. 20) will 
be  used  to  make  the  comparisons  of  theory  and  experiment,  and  the  Ferri 
model and  the  unified  model will both  be  used  with a  constant  turbulent 
Schmidt  number  of 0.75 (Refs. 1, 12). Consider  first  the  data  of  Zakkay 
and  Krause  (Ref. 20). Note  that  their  external  air  stream  was  supersonic 
(M 1.6), but  it will be  seen  that  this  does  not  prevent  these  results 
from  fitting  into  the  general  picture  that we are  attempting  to  construct. 
Using  the  data  for  the  case  with  u./ue = 1.14  and  p.u./peue = 0.14, a 
comparison  between  theory  and  experiment  is  given  in  Fig. No. 10, on  the 
basis  of  the  centerline  decay  of  hydrogen  concentration. It is  clear  that 
both  models  underestimate  the  rate of decay  in  the  far  flow  field.  The 
unified  model is, however,  in  better  quantitative  and  qualitative  agree- 
ment  with  the  data. 

J J J  

It is  interesting to consider  a  case  with  an  even  lower  value  of 
pjuj/peue,  and  for  this  purpose  Alpinieri's  results  for  u./u = 0.67 and 
p.u./p u = 0.04 are  employed.  These  experiments  were  made  with a large 
jet (2$ ziameter)  which  reduces  initial  boundary  layer  effects but limited 
the  non-dimensional  axial  length  of  the  data  to  x/a = 20. In this  short 
distance, it can be expected  that  the  heuristic  approximation  of  the  eddy 
viscosity  in  the  initial  region  employed  previously  will  introduce  serious 
error.  The  calculations  were  therefore  begun  using  the  measured  profiles 
at  x/a = 5.0 as  "initial"  conditions.  The  development  of the flow  field 
from  x/a = 5.0 to x/a = 20 as  predicted  by  the  theory was  then  compared 
with  the data as  shown  in  Fig. No. 11. Both  models  give  results  in  reason- 
able  agreement  with  the  data  although  the  far  downstream  rate of decay  is 
again  under-estimated.  Interestingly,  the  results  for  the  two models are 
in  very  close  agreement.  Apparently,  the two models  tend  to  become  the 
same  in  the  limit  of  very  small  values  of  the  parameter  p.u./p u . 

J e  
J J  

J J  e e  
One  further  aspect  of  the  specification  of  an  eddy  viscosity  model 

was  considered.  The  Prandtl  model  and  all  its  descendants,  including  that 
introduced  here,  are  based  upon  the  difference  of  some  quantity  across  the 
mixing  region.  When  the  particular  difference  upon  which a  given  model  is 
based  becomes  zero,  that  model will predict a  vanishing  eddy  viscosity. 
This, of course,  is  not in agreement  with  common  experience,  and  one  must 
simply  accept  this  limitation  upon  the  applicability  of  the  given  model. 
The  actual  extent  of  that  limitation is,  however,  very  important. In the 
present case, if  the  radius  weighted  integral  of  the  mass  flow  difference 
becomes  zero,  the  limitation  has  certainly  been  reached.  The  case  of  uniform 
initial mass flow (i.e. p.u./peue = 1.0) will  produce  this  result, so  that 

J J  
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the  extent  of  the  limitation of this  model can be discussed in  terms 
of  the  initial  mass  flow  ratio.  A case with p-u ./peue = 0.63 (Ref. 26) 
was considered,  and  a  comparison  between  theory  and  experiment  is  pre- 
sented in Fig. No. 12. Clearly,  the  present  model  is  still  applicable, 
and  the  limiting  value of p.u./p  u must  lie  closer  to  unity. 

J J  e e  

J J  

An additional case  of  this  type, i.e.  pjuj/peue near  unity,  with 
hydrogen  injection  and  u./ue not  near  unity was studied.  The  experimental 
data  of  Chriss  (Ref.  27)  for  his  case  1A  (p.u./peue = 0.56,  uj/ue = 6.3) 
were compared with analytical  predictions  uslng  both  the  unified  model  and 
the  Ferri  model.  The  calculation was started with experimental  profiles 
at  x/a = 5.9. Results  for  centerline  hydrogen  concentration  and  velocity 
decay  are  given in Figs. No. 13  and 14, respectively.  Here,  as  has  been 
generally  true,  the  unified  model  produces  a  superior  prediction. 

J 
J . J  

DISCUSSION 

Analysis  of  the  turbulent  mixing  of  a  jet in a co-flowing  external 
stream  has  been  considered in detail  with  particular  emphasis  placed  on 
the  form  for  a  model  for  the  eddy  viscosity. A new  interpretation was 
placed  on  Clauserls  low  speed,  planar  model  for  the ‘bake” region  of  a 
turbulent  boundary  layer  that  permitted  the  derivation  of  a  model  for 
cases  with  varying  density  and/or an axi-symmetric  configuration.  Exten- 
sive  comparisons  between  experiment  and  calculations  using  the  unified 
model  as well  as  previous  suggestions  were  made.  Cases  considered 
included  planar  and  axi-symmetric  flows,  heated  and  unheated  jets,  sim- 
ilar  and  foreign  gas  injection,  subsonic  and  supersonic  external  flows 
and  a  range  of  the  mass  flux  ratio,  p.u./peuey  from 0.04 to 4 . 0 .  Good 
quantitative  agreement  between  theory  and  experiment was obtained  over 
this  range  using  the  unified  model  for  the  eddy  viscosity;  the  poorest 
agreement was  at the  lowest  values  of  p.u./peue with hydrogen  injection. 
Most  importantly,  the  axial  rate  of  decay  of  the  centerline  values  of 
velocity,  temperature  and  jet  concentration in the  axi-symmetric  con- 
figuration  as  predicted  by  the  unified  model  were in better  agreement 
with experiment  than  previously  suggested  models. In this  regard,  it 
is  interesting to note  that  the  unified  model  and Ferri’s  model tend 
to  give  identical  predictions in the  limit  as  the  mass  flux  ratio  be- 
comes  very  small. In summary,  it  may  be  stated that  the  present  results 
in conjunction with  those  of (Ref. 361,  demonstrate  that  the  unified  model 
provides  a  unified  description  of  the  eddy  viscosity  in  free  mixing 
flows  including  planar  and  axi-symmetric  flows,  varying  temperature, 
varying  composition  and  axial  pressure  gradients. 

J J  

J J  

The  formal  statement  of  the  unified  model  permits  easy  extension 
to  truly  three  dimensional cases, and  some  studies in this  area  are  planned. 
Also,  further  work  with,  both  experimental  and  analytical,  strong  axial 
pressure  gradients  is  needed. 
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TABLE I 
SUMMARY  OF  EXPERIMENTS  FOR A  JET  IN  A  CO-FLOWING  STREAM 

Axi-  Variable  Foreign  Gas  Pressure 
Author  Year  Ref.  No.  Planar  symmetric  Temperature  Injection  Gradient 

Ledge t  t 

Viktorin 

Pabs t 

Ferguson 

Forstall & Shapiro 

Landis & Shapiro 

Helmbold,  et  a1 

Weinstein, et a1 

Curtet 

Mikhai 1 
Maczynski 

Ferri, et  a1 

Becker,  et  a1 

Zhestov,  et a1 

Yakovlevskiy & 
Pechenkin 

Borodachev 

Zakkay & Krause 
Marquardt  Corp. 

Alpinieri 

Zakkay, et  a1 

Barchilon & Curtet 

Bradbury & Riley 

Torrence & Eggers 

Chriss 

1934 

1941 

1944 

1949 

1950 

1951 

1954 

1955 

1958 

1960 

1962 

1962 

1962 
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1963 

19 64 

1964 

1964 

1967 

1967 

1968 

8 X 

9 

10 

11 X 

1 
12 

13 

14 X 

15 X 

16 

17 

18 

19 

4(pp.28,344) x 

4 (PP.  274) 

4 (PP.  29) 
20 

21 X 

22 

23 

24 

25 X 

26 

27 

X 

X X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

X 

He 

X He, C02 

X 

X 

X 

X 

X 

X 

X 

X 

X 

H2 
Aerosol X 

H2 

H2 
H2 3CO2 

H 2 ,He,C02,A 
X 

H2 



TABLE II EDDY VISCOSITY MODELS FOR MAIN MIXING REGION OF JETS AND WAKES 

s (pp.48S) ~ x ~ x 

REWIRES TWO MIXING LENGTHS 1 
CONCEPT; WITH b TAKEN AS bh, K~ 
lNTR0DUCED"VELDCITY  DIFFERENCE" 

I( 0.25 IN AXCSYMMETRIC JETS. 
0.037 IN  PLANAR  JETS AND 

WAKE OF A CYLINDER OF ARBITRARY 
CROSS SECTION 

\PPLIED TO "WAKE"-LIKE OUTER 

0.016 < K  < 0.018 
REGION OF A BOUNDARY LAYER, 

1 

5 (pp. 481) X 

SCHLICH -INC 

CLAUSER 

5 I x ~  0.0222 ye  cD a 1942 

I 

19S6 

1959 

1960 

1960 

1962 

1963 

1963 

1964 

1964 

1968 

31 I 1  
6 l x l  I I 0.016 y e  d I I WAKE OF A CIRCULAR  CYLINDER HlNZE 

Lo IS THE CONSTANT DENSITY EDDY 

VISCOSITY AND pc IS THE CENTER. 
LINE DENSITY 

z 0  IS THE CONSTANT DENSITY EDDY 
VISCOSITY AND ps IS THE  CENTER- 
LINE DENSITY 

EXTENDED PRANDTL'S THIRD MODEL 
TO VARIABLE DENSITY, INTRODUCED 
"MASS FLOW DIFFERENCE"CONCEP1 

THIRD MODEL TO VARIABLE DENSITY, 
ATTEMPT TO EXTEND  PRANDTL'S 

6' IS TRANSFORMED WAKE RADIUS 

SIMPLE APPLICATION OF "MASS FLOW 
DIFFERENCE"T0  PLANAR FLOWS 

PRESUMES THAT  CENTERLINE 
VELOCITY A D CONCENTRATION 
DECAY AS x' 

UNIFIED  MODEL 

TINO-LIBBY 32 
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Fig. 2 THEORY AND EXPERIMENT FOR PLANAR, CONSTANT 
DENSITY JET MIXING, Ui/U, = 2.0 
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Fig. 3 EDDY  VISCOSITY  MODELS IN  PLANAR  JET  MIXING 
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Fig. 4 THEORY  AND  EXPERIMENT FOR AXISYMMETRIC, 
CONSTANT  DENSITY JET  MIXING, Ui/U, = 2.0 
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Fig. 5 THEORY AND EXPERIMENT FOR ASYMPTOTIC  DECAY 
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Fig. 6 EDDY  VISCOSITY  MODELS IN AXISYMMETRIC JET 
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Fig.  7  THEORY AND EXPERIMENT FOR HEATED, AXISYMMETRIC 
AIR J ET; Ui/Ue=2.0,  Ti/Te= 1.19 
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Fig. 8 THEORY AND EXPERIMENT FOR HEATED  AXISYMMETRIC 
AIR JET; Ui /U, = 4.0, Ti/T, = 1.31 
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Fig. 9 THEORY AND EXPERIMENT FOR TEMPERATURE 
FIELD OF HEATED AXISYMMETRIC  AIR  JET; 
Ui/Ue = 4.0, Ti/Te = 1.31 
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Fig. 10 THEORY AND EXPERIMENT FOR AXISYMMETRIC 
HYDROGEN JET  MIXING IN AIR, 
~ iU i /~cUc=0 .140  
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Fig. 11 THEORY AND EXPERIMENT FOR AXISYMMETRIC 
HYDROGEN  JET  MIXING  IN AIR, 
Pi U* /  I Pe U e = 0,040 
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Fig. 12 THEORY AND EXPERIMENT FOR AIR JET MIXING  IN 
A SUPERSONIC AIR SYSTEM,PjUj - = 0.63 
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F ig .  13 THEORY AND EXPERIMENT FOR CONCENTRATION 
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